Renewable Energy : The Future of Biofuels

January 20, 2017

Presentation outline

I- Introduction to the Investment for the Future Program

II- Example of projects funded

III- Bio-sourced chemistry & Investment for the Future Program

ADEME is a public body dedicated to renewable energies and environment

French Agency for Environment and Energy Management (ADEME)

- Public body created in 1991
- Around 1,000 employees

3 main missions

- Promoting new solutions for transition through Research, Innovation and Experimentation
- Providing expertise for public and private actors
- Supporting the generalization of good practices for energy transition among all actors

2 main levers

- Own budget (€590m p.a.)
- "Investissements d'Avenir /Investment for the Future Program" (multiyear program)
 €3.1bn for innovation in energy transition

3

ADEME is managing a €3.1bn program dedicated to environment and renewable energies sectors

4

22 topics covered by ADEME's Investment for the Future Program

Low carbon energies (15 topics)

Wind energy Solar energy Marine renewable energies Geothermal energy Hydrogen Smart grids Energy storage CO₂ capture and storage Eco-efficient building sector Eco-efficient industrial process Bio-based chemistry Waste treatment Water treatment Sites and soil decontamination Biodiversity

Future transportation vehicles (7 topics)

Electric vehicles Thermal and hybride engines Vehicles weight reducing Heavy vehicles Logistic and mobility Rail transport Future ships

Objectives

- Fostering innovation in environment and energy
- Public / private risk sharing for marketing of innovative technologies and services

Presentation outline

I- Introduction to the Investment for the Future Program

II- Example of projects funded

III- Bio-source chemistry & Investment for the Future Program

Call for financing of pilot floating wind farms

ADEME

Pilot floating wind farms

Offshore Foundations type by water depth

- Floating offshore wind
 - Market segment of the offshore wind market
 - Horizontal axis WTG & a floating foundation
 - Well adapted to deep water zones (>50m)
 - Increasing distance to shore (higher winds and local acceptability)
 - Deep seas (Japan, US Pacific coast, Mediterranean) or complex sea beds (China)
- A way to maximize the offshore wind LCOE ?
 - Higher yield (winds > 8m/s)
 - Installation cost reduction (low geotechnical studies cost, no need for heavy installation vessels, less dependency to weather windows)
 - Trend for larger capacity turbines (6-10 MW)

Floating wind market

Main geographic markets (in GW)

Source : Etude BearingPoint

Pilot wind farm call: 4 selected development areas

- 4 areas selected before the call for financing
- I zone in Britany
 - Moderate wind speed
 - Heavy swell
 - High dependency to weather conditions during installation and maintenance phase
 - Representative to « open sea » market conditions

3 zones in Mediterranean sea

- Very high wind speed
- Low swell
- Representative to «closed sea » market conditions
- To ensure a pre-commercial track-record on two different market segments (« open » vs « closed seas » conditions) to the offshore floating wind industry

4 pilot farms financed

Project Name	Sponsors	Zone	WTG (installed capacity)	Floating foundation manufacturer and type	Picture
GROIX	Eolfi & CGN EE	Atlantic Sea	GE (4 x 6 MW = 24 MW)	DCNS (semi- sub)	
eolmed gruissan	Quadran	Med. Sea	Senvion (4 x 6,15 MW = 24,6 MW)	Idéol (damping- pool)	
PROVENCE GRAND LARGE	EDF EN	Med. Sea	Siemens (3 × 8 MW = 24 MW)	SBM Offshore (tension-leg platform)	
EFGL	ENGIE & EDPR	Med. Sea	GE (4 x 6 MW = 24 MW)	Principle Power (semi-sub)	the

- 4 projects financed by means of
 - State-aids (grants and refundable advance) for €300m
 - Feed-in tariff for electricity produced

3 types of floating foundation technology

- Semi-sub (steel / steel-concrete)
- Damping pool (concrete)
- Tension leg platform (steel)
- Yards and O&G companies consider offshore wind (fixed and floating) as a new growth driver

NA

ADEME's SPV equity tool

ADEME

ADEME's SPV equity tool

Project	Type of investment	Description	Type of financing	Pictures
Exosun	Direct investment in SME with a PE fund	Solar trackers for utility- scale power plants	Venture capital	
Alstom Offshore France	Joint-venture with GE (ex- Alstom)	Mass-production of offshore high-power wind turbines generators (WTG)	Production plant financing	
Hybrid Air	Joint-venture with PSA	Development of a new type of a full hybrid gasoline system	R&D financing	- 8 - e
Areva H2 Gen	Direct investment in SME with Areva	Mass-production of PEM water hydrogen generators	Venture capital	
Ecotitanium	Joint-venture with Eramet	Recycling of aviation grade titanium	Production plant financing	
Enersens	Direct investment in SME with PCAS	Development and mass- production of silica aerogels	Venture capital	
Speedinnov	Joint-venture with Alstom Transport	Development of a new high-speed train technology	R&D financing	
Merkur	HoldCo with GE	Offshore wind farm located in Germany using GE's new 6MW WTG	Infrastructure project financing	Ĭ

- Minority investments (<49% of share capital)
- In the name and in behalf of the French State as a "market investor" → specific requirements on investments return and liquidity
- 8 investments for a total amount exceeding €300m

ADEM

Presentation outline

I- Introduction to the Investment for the Future Program

II- Example of projects funded

III- Bio-sourced chemistry & Investment for the Future Program

Example: BioButterfly

- Need to find sustainable alternative sourcing channels for elastomers
- Objective: production of an environmentallyfriendly synthetic rubber
- Technology: butadiene synthesis based on bio sourced alcohol

Collaborative project

3 partners (Axens, IFPEN, Michelin)

Large scale project

- From R&D to the industrial demonstrator
- €52m project with €14.7m of subsidies (grants and refundable loans)

Example: BioTfuel

- Developing and marketing an end-to-end chain of technologies for converting biomass into 2nd generation biofuels via thermochemical conversion
- Objective : Produce 200,000 metric tons of renewable diesel and jet fuel per year from one million metric tons of biomass by 2020
- Process : 4 steps
 - Biomass pre-treatment and torrefaction
 - Gasification
 - Syngas clean up and conditioning
 - Fischer-Tropsch synthesis and upgrading
- Main technological risks are the biomass torrefaction (at large scale) and the syngas conditioning (important R&D expenses). FT technology is proven

Collaborative project

6 partners

Large scale project

- After 5 years R&D, construction of a demonstrator in Dunkirk
- €113m project with €33.3 of state-aids (grants and refundable loans)

Bio-sourced chemistry sector financing

- Since 2005, direct R&D subsidies and refundable loans from French State (via Agence Nationale de la Recherche, PSPC, Investment for the Future Program):
 - €40m on the sourcing
 - €600m on processes
- Financing of industrial demonstrator and first commercial unit requires high CAPEX and characterized by first operating years negative cash flows
- Best way to finance high CAPEX units: equity financing (private / public risk sharing) as venture and PE funds are reluctant to invest

Example of a potential demonstrator equity financing

ADEME SPV's tool fully operational

- More than €300m invested / committed in equity
- Few projects with large amount invested
- Flexible tool

A Market-like investor tool well adapted to bio-sourced chemistry sector

- Subsidies are limited by the EC framework on state aids (art 107-3 c/ of the Treaty) in terms of intensity of public financing and more specifically for green chemistry in terms of eligible costs (limited to 'pure' r-d activities)
- Over this limit, the only capacity for State intervention is within the principle of the "market-like investor"